NAME	FRUITS
Piglet	apple
Winnie	apple
Piglet	pear
Winnie	pear
Kanga	pear
Tigger	pear
Winnie	raspberry
Piglet	raspberry
Kanga	raspberry
Tigger	raspberry
Rabbit	strawberry
Piglet	strawberry

Exercises for the first and second practice.

Determine the relational algebraic expression which answers the following questions:

1. Which fruits does Winnie like?

$$R1 = \pi_{FRUITS}(\sigma_{NAME='Winnie'}(Likes))$$

2. Which fruits doesn't Winnie like but someone else do?

$$R2 = \pi_{FRUITS}(Likes) - \pi_{FRUITS}(\sigma_{NAME=',Winnie'}(Likes))$$

3. Who likes apple?

$$R3 = \pi_{NAME} \left(\sigma_{FRUITS=\prime Apple\prime}(Likes) \right)$$

4. Who doesn't like apple but like something else?

$$R4 = \pi_{NAME}(Likes) - \pi_{NAME} \left(\sigma_{FRUITS='Apple'}(Likes)\right)$$

5. Who likes apple or pear?

$$R5 = \pi_{NAME} \left(\sigma_{FRUITS='Apple'}(Likes) \right) \cup \pi_{NAME} \left(\sigma_{FRUITS='Pear'}(Likes) \right)$$

6. Who likes both apple and pear?

$$R6 = \pi_{NAME} \left(\sigma_{FRUITS='Apple'}(Likes) \right) \cap \pi_{NAME} \left(\sigma_{FRUITS='Pear'}(Likes) \right)$$

7. Who likes apple but doesn't like pear?

$$R7 = \pi_{NAME} \left(\sigma_{FRUITS=\prime Apple\prime}(Likes) \right) - \pi_{NAME} \left(\sigma_{FRUITS=\prime Pear\prime}(Likes) \right)$$

(Cont.) Exercises for the first and second practice.

8. . Who likes at least two different fruits?

$$R8 = \pi_{NAME} \left(\sigma_{NAME=NAME1 \ AND \ FRUITS \neq FRUITS1} (L \times L1) \right)$$

9. Who likes at least three different fruits?

$$R9 = \pi_{NAME} \begin{pmatrix} \sigma_{NAME=NAME1 \ AND \ NAME=NAME1} \left((L \times L1) \times L2 \right) \\ AND \quad FRUITS \neq FRUITS1 \ AND \\ FRUITS \neq FRUITS2 \\ AND \quad FRUITS1 \neq FRUITS2 \end{pmatrix}$$

10. Who likes at most two different fruits?

$$R10 = \pi_{NAME}(L) - R9$$

11. Who likes exactly two different fruits?

$$R11 = R8 - R9$$

12. Who likes every fruits?

$$R12 = \pi_{NAME}(L) - \pi_{NAME} \left(\left(\pi_{NAME}(L) \times \pi_{FRUITS}(L) \right) - L \right)$$

13. Who likes at least those fruits that Winnie likes?

$$R13 = \pi_{NAME}(L) - \pi_{NAME}\left(\left(\pi_{NAME}(L) \times \pi_{FRUITS}(\sigma_{NAME='Winnie'}(L))\right) - L\right)$$

14. Who likes at most those fruits that Winnie likes?

$$R14 = \pi_{NAME}(L) - \pi_{NAME}\left(L - \left(\pi_{NAME}(L) \times \pi_{FRUITS}(\sigma_{NAME='Winnie'}(L))\right)\right)$$

15. Who likes exactly those fruits that Winnie likes?

$$R15 = R13 \cap R14$$